Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Sci Rep ; 13(1): 22953, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38135692

Recently, MAX phases have attained considerable technological interest owing to their two inherent properties metallic and ceramic properties. This study extensively examined Nb2ScAC2 MAX phases using DFT, to assess the structural, mechanical, electronic, and Thermal characteristics. Firstly, the stability of these two compounds was confirmed through the formation energy, elastic constants (Cij), and phonon band structure, which confirmed their thermodynamic, mechanical, and dynamical stability. The optimized lattice parameters of these compounds were examined and then utilized to calculate the physical properties of the Nb2ScAC2 compound. Our compounds are brittle due to their Pugh's ratio of less than 1.75. The covalent bonding of the structure revealed by the Poisson ratio is less than 0.25 for the two compounds. The Nb2ScAC2 material is anisotropic, and Nb2ScAlC2 is harder than Nb2ScSiC2.The metallic character of the materials was affirmed by the electronic band structure analysis. Calculated thermal properties such as Debye temperature and minimum and lattice thermal conductivity reveal that both compounds have the potential to enhance their deployment in thermal barrier coating materials. On the other hand, the high melting temperatures indicate that our compounds could potentially be utilized in demanding or severe conditions. Finally, the thermodynamic characteristics, comprising the isochoric heat capacity (Cv) and Debye temperature (Ï´D) were analyzed subjected to high temperatures and pressures. The optical constants such as real and imaginary parts of the dielectric function, refractive index and reflectivity, are investigated. The current study recognizes these two compounds as promising candidates for utilization in modern technologies and diverse industries.

2.
ACS Omega ; 8(37): 33622-33628, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37780456

The need for new and better semiconductor materials for use in renewable energy devices motivates us to study KRuF3 and KOsF3 fluoride materials. In the present work, we computationally studied these materials and elaborate their varied properties comprehensively with the assistance of density functional theory-based techniques. To find the structural stability of these under-consideration materials, we employed the Birch-Murnaghan fit, while their electronic characteristics were determined with the usage of modified potential of Becke-Johnson. During the study, it became evident from the band-structure results of the KRuF3 and KOsF3 materials that both present an indirect semiconductor nature having the band gap values of 2.1 and 1.7 eV, respectively. For both the studied materials, the three essential elastic constants were determined first, which were further used to evaluate all the mechanical parameters of the studied materials. From the calculated values of Pugh's ratio and Poisson's ratio for the KRuF3 and KOsF3 materials, both were verified to procure the nature of ductility. During the study, we concluded from the results of absorption coefficient and optical conduction in the UV energy range that both the studied materials proved their ability for utilization in the numerous future optoelectronic devices.

4.
ACS Omega ; 8(37): 33794-33801, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37744822

In this work, new compositions of Sr0.8Mg0.2(Sn1-xZrx)O3 0.00 ≤ x ≤ 0.06 ceramics are designed and synthesized by the conventional solid-state route. The influence of Zr doping on the phase, microstructural, optical, and dielectric properties is thoroughly investigated. The peaks (0 0 4) and (1 1 0) are observed to shift toward lower 2θ values, due to the variation of the ionic radius between Zr4+ and Sn4+. X-ray diffraction patterns reveal the orthorhombic structure with the space group Pbnm. Scanning electron microscopy images reveal the presence of pores and particles with a high degree of agglomeration. The functional groups and modes of vibration are determined by Fourier transform infrared spectroscopy of the prepared metal oxide samples. The existence of green emission of all the synthesized samples around 554.91 nm is identified by photoluminescence spectroscopy. The dielectric properties of the fabricated samples are measured by using an impedance analyzer. The values of the tangent loss and relative permittivity are found to decrease with increasing frequency.

5.
RSC Adv ; 13(41): 28395-28406, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37766934

In our pursuit of enhancing material performance, our focus is centered on the investigation of sodium-based halide perovskites, specifically NaXCl3 (where X = Be & Mg). We are utilizing first-principles methods based on density functional theory (DFT) to delve into these materials' properties and potential improvements. This investigation is executed using the WIEN2K code, aiming to uncover a deeper understanding of these materials' properties and potential enhancements. In this study, we utilize the Full Potential Linear Augmented Plane Wave (FP-LAPW) approach to analyze the structural, mechanical, electronic, and optical properties of cubic perovskite materials NaXCl3 (X = Be, Mg). We employ the Birch-Murnaghan fitting curve to assess the structural stability of these compounds, and in each case, the compound demonstrates structural stability in its optimal or ground state. The existence of real frequencies serves as confirmation of the phonon stability for both compounds. To determine the elastic characteristics, the IRelast Package is used. This involves calculating the elastic constants, which demonstrates that the compounds have anisotropic, ductile properties and demonstrate mechanical stability. We investigate the electronic properties by analyzing the density of states and the band structure. Both compounds exhibit an indirect band gap energy of 4.15 eV for NaBeCl3 and 4.16 eV for NaMgCl3. We analyze both the total and partial density of states to gain insight into the contributions of different electronic states to the band structure. Furthermore, optical characteristics, including the dielectric function, absorption coefficient, refractive index, and reflectivity, are investigated across an energy spectrum ranging from 0 to 15 eV. These findings can offer a comprehensive insight into the development of advanced electronic devices with improved efficiency and enhanced capabilities. Furthermore, they have the capacity to inspire experimental researchers to delve further into this field for subsequent explorations.

6.
ACS Omega ; 8(31): 28749-28757, 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37576655

In the current work, pure ZnO and Mn-doped ZnO nanoparticles were synthesized by the sol-gel autocombustion method. Structural analysis and phase determination were done by X-ray diffraction, and a hexagonal wurtzite structure was exhibited with disparate microstructures for all samples. Mn2+ ions were well composed, as evidenced by the fluctuation of lattice parameters, dislocation density, and lattice strain. Crystallite size decreases from 38.42 to 27.54 nm by increasing the doping concentration. Field emission scanning electron microscopy results shows the combination of evenly distributed spherical-like and hexagon-like structures. Fourier transform infrared spectra revealed that when Mn content increased, the absorption bands red-shifted. The drop in the energy band gap from 3.25 eV for ZnO to 2.99 eV for Zn0.96Mn0.04O was predicted by ultraviolet-visible absorption spectra. This red shift in the energy band gap can be explained by the sp-d exchange interaction between the band electrons of ZnO and localized d electrons of Mn. A study of magnetic properties revealed the change of the diamagnetic attribute for pure ZnO to the room-temperature ferromagnetic attribute of doped samples. In the current study, room-temperature ferromagnetism was achieved for Mn-doped ZnO nanoparticles, which can serve as a desirable option for practical applications in the future.

7.
ACS Omega ; 8(33): 29959-29965, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37636967

Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.

8.
ACS Omega ; 8(25): 22955-22963, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37396221

Preparation of a lead-free system (Ba0.8Ca0.2)TiO3-xBi(Mg0.5Ti0.5)O3 (BCT-BMT) with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 was carried out using a solid-state reaction technique. X-ray (XRD) diffraction analysis confirmed a tetragonal structure for x = 0, which shifted to cubic (pseudocubic) at x ≥ 0.1. From Rietveld refinement, a single phase with a tetragonal symmetry model (P4mm) was observed for x = 0, and however, for sample x = 0.1 and sample x = 0.5, the data are modeled to cubic (Pm3m). Composition x = 0 showed a prominent Curie peak, typical of ordinary ferroelectrics with a Curie temperature (Tc) ∼130 °C, modified to a typical relaxor dielectric at x ≥ 0.1. However, samples at x = 0.2-0.5 displayed a single semicircle attributed to the bulk response of the material, whereas a slightly depressed second arc appeared for x = 0.5 at 600 °C, indicating a slight contribution to the electrical properties, ascribed to the grain boundary of the material. Finally, the dc resistivity increased with the increase of the BMT content and the solid solution increased the activation energy from 0.58 eV at x = 0 to 0.99 eV for x = 0.5. Adding the BMT content eliminated the ferroelectric behavior at compositions x ≥ 0.1 and led to a linear dielectric response and electrostrictive behavior with a maximum strain of 0.12% for x = 0.2.

9.
RSC Adv ; 13(30): 20966-20974, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37448644

This study communicates the theoretical investigations on the cubic double perovskite compounds Cs2XCrCl6 (X = K or Na). Density functional theory (DFT) calculations were carried out using the TB-mBJ approximation. These compounds were found to be stable in the cubic perovskite structure having lattice constants in the range of 10.58-10.20. The stability of the investigated materials was assessed by the Gold-Schmidt tolerance method, which resulted in the tolerance factor values of 0.891 and 0.951 for Cs2KCrCl6 and Cs2NaCrCl6, respectively. The calculated values of the elastic constants C11, C12, and C44 of the cubic compounds studied by our research team confirm the elastic stability. The values of the formation energies were also calculated for both the compounds and were found in the range from -2.1 to -2.3. The electronic behavior of the presently investigated materials was examined by inspecting their band structures and the density of states. It was observed that both the materials have half-metallic nature. To check the suitability of the studied compounds in optical applications, we determined the real and imaginary parts of their respective dielectric functions, absorption coefficients, optical conductivities, refractive index, and reflectivity as a function of a wide range of incident photon energies up to 40 eV.

10.
RSC Adv ; 13(33): 22958-22965, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37520091

The non-toxic nature of lead-free materials with cubic perovskite structure has attracted the researcher's attention, and huge work is ongoing for the search of such materials. Furthermore, due to demand for their utilization in diverse applications, such as photovoltaic and optoelectronics, these inorganic-halide materials have become more enchanting for engineers. In the present work, all the key properties, including structural, electronic, optical, and mechanical, of rubidium based RbVX3 (where X is chlorine, bromine, and iodine) materials were extensively studied via first-principle density functional theory (DFT). The study reveals the half-metallic nature of the currently studied materials. For the mechanical stability of RbVX3 compounds, all three independent elastic coefficients (Cij) were determined, from which it was concluded that these materials are mechanically stable. Moreover, from the Poison and Pugh's ratios, it was found that the RbVCl3 and RbVBr3 materials have ductile nature, while RbVI3 has brittle nature upon the applied stress.

11.
RSC Adv ; 13(29): 20198-20208, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37416915

Vertically aligned zinc oxide nanorod (ZnO-NR) growth was achieved through a wet chemical route over a comb-shaped working area of an interdigitated Ag-Pd alloy signal electrode. Field-emission scanning electron microscopy images confirmed the formation of homogeneous ZnO-NRs grown uniformly over the working area. X-ray diffraction revealed single-phase formation of ZnO-NRs, further confirmed by energy-dispersive X-ray spectroscopy analysis. Temperature-dependent impedance and modulus formalisms showed semiconductor-type behavior of ZnO-NRs. Two electro-active regions i.e., grain and grain boundary, were investigated which have activation energy ∼0.11 eV and ∼0.17 eV, respectively. The conduction mechanism was investigated in both regions using temperature-dependent AC conductivity analysis. In the low-frequency dispersion region, the dominant conduction is due to small polarons, which is attributed to the grain boundary response. At the same time, the correlated barrier hopping mechanism is a possible conduction mechanism in the high dispersion region attributed to the bulk/grain response. Moreover, substantial photoconductivity under UV light illumination was achieved which can be attributed to the high surface-to-volume ratio of zinc oxide nanorods as they provide high density of trap states which causes an increase in the carrier injection and movement leading to persistent photoconductivity. This photoconductivity was also facilitated by the frequency sweep applied to the sample which suggests the investigated ZnO nanorods based IDE devices can be useful for the application of efficient UV detectors. Experimental values of field lowering coefficient (ßexp) matched well with the theoretical value of ßS which suggests that the possible operating conduction mechanism in ZnO nanorods is Schottky type. I-V characteristics showed that the significantly high photoconductivity of ZnO-NRs as a result of UV light illumination is owing to the increase in number of free charge carriers as a result of generation of electron-hole pairs by absorption of UV light photons.

12.
Clin Lab ; 69(6)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37307114

BACKGROUND: Lymphoma is one of the leading cancers in Saudi Arabia. Because there is a paucity of data about the prevalence of lymphomas in Saudi Arabia, numerous extensive investigations are still required. Thus, the present study aimed to assess the common patterns of lymphomas in Northwestern Saudi Arabia. METHODS: This is a retrospective study conducted at the Histopathology Departments of King Khalid and King Salman Hospitals in Hail city, Saudi Arabia, between 2008-2020. The present study comprised 134 lymphoma patients, and all data referring to these patients, such as gender, age, lymphoma type, grade, and cancer site, were retrieved. RESULTS: The most common lymphoma type was NHL, followed by HL, constituting 32.8% and 20%, respectively. There was a clear difference between male and female patients of HL type where the male was higher than the female (24% versus 15.3%). The risk of HL associated with male gender, the relative risk (RR) CI (95% Confidence interval) = 2.0077 (0.9447 - 4.2667), p = 0.0700, z statistic = 1.812. CONCLUSIONS: Lymphoma is prevalent in the Hail region with an exceptionally everincreasing incidence of HL. Wide-ranging lymphoma varieties have been explored in the Hail region, denoting large groups of unattributable etiologic modifiable risk factors.


Lymphoma , Humans , Female , Male , Retrospective Studies , Saudi Arabia , Hospitals , Risk Factors
13.
Molecules ; 28(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37375416

Recently, much research has revealed the increasing importance of natural fiber in modern applications. Natural fibers are used in many vital sectors like medicine, aerospace and agriculture. The cause of increasing the application of natural fiber in different fields is its eco-friendly behavior and excellent mechanical properties. The study's primary goal is to increase the usage of environmentally friendly materials. The existing materials used in brake pads are detrimental to humans and the environment. Natural fiber composites have recently been studied and effectively employed in brake pads. However, there has yet to be a comparison investigation of natural fiber and Kevlar-based brake pad composites. Sugarcane, a natural fabric, is employed in the present study to substitute trendy materials like Kevlar and asbestos. The brake pads have been developed with 5-20 wt.% SCF and 5-10 wt.% Kevlar fiber (KF) to make the comparative study. SCF compounds at 5 wt.% outperformed the entire NF composite in coefficient of friction (µ), (%) fade and wear. However, the values of mechanical properties were found to be almost identical. Although it has been observed that, with an increase in the proportion of SCF, the performance also increased in terms of recovery. The thermal stability and wear rate are maximum for 20 wt.% SCF and 10 wt.% KF composites. The comparative study indicated that the Kevlar-based brake pad specimens provide superior outcomes compared to the SCF composite for fade (%), wear performance and coefficient of friction (Δµ). Finally, the worn composite surfaces were examined using a scanning electron microscopy technique to investigate probable wear mechanisms and to comprehend the nature of the generated contact patches/plateaus, which is critical for determining the tribological behavior of the composites.

14.
ACS Omega ; 8(22): 19892-19899, 2023 Jun 06.
Article En | MEDLINE | ID: mdl-37305269

In this work, the new compositions of FeCoNiAlMn1-xCrx, (0.0 ≤ x ≤ 1.0), a high-entropy alloy powder (HEAP), are prepared by mechanical alloying (MA). The influence of Cr doping on the phase structure, microstructure, and magnetic properties is thoroughly investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry. It is found that this alloy has formed a simple body-centered cubic structure with a minute face-centered cubic structure for Mn to Cr replacement with heat treatment. The lattice parameter, average crystallite size, and grain size decrease by replacing Cr with Mn. The SEM analysis of FeCoNiAlMn showed no grain boundary formation, depicting a single-phase microstructure after MA, similar to XRD. The saturation magnetization first increases (68 emu/g) up to x = 0.6 and then decreases with complete substitution of Cr. Magnetic properties are related to crystallite size. FeCoNiAlMn0.4Cr0.6 HEAP has shown optimum results with better saturation magnetization and coercivity as a soft magnet.

15.
J Mech Behav Biomed Mater ; 144: 105963, 2023 08.
Article En | MEDLINE | ID: mdl-37320892

The present work is focused on the nano-Hydroxyapatite (nHAp) synthesis with two different Indian breed Aseel and Kadaknath eggshells. The alloplast implants were developed through the foam replica method with polyurethane 45-PPI as a porous template. The synthesized nHAp was characterized by Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The FE-SEM images of the nHAp showed the one dimensional clustered nanoparticles and the X-ray diffraction spectrum confirms that the major phase was hydroxyapatite with a small trace of ß-tricalcium phosphate. The maximum compression strength of the sample was 5.49 ± 0.12 MPa which is in the range of the compression strength of human trabecular bone. The thermal and degradability studies results confirmed that these are highly stable and provides necessary a resorption needed for new bone tissue formation. Besides, the antimicrobial activity against tested human microbiome are satisfactory and the cell viability towards MG 63 human osteoblast-like cells provides a potential pathway for developing the nHAp implants for bone tissue engineering.


Durapatite , Orthopedics , Animals , Humans , Durapatite/chemistry , Egg Shell , Arthroscopy , Bone and Bones , Tissue Engineering/methods , X-Ray Diffraction , Dentistry , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry
16.
RSC Adv ; 13(27): 18934-18945, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37350857

To enhance the effectiveness of materials, we are motivated to investigate lithium-based halide perovskites LiRCl3 (where R = Be and Mg) using first-principles techniques based on density functional theory (DFT), implemented in the WIEN2K code. In this study, the research makes use of the WIEN2K simulation code, employing the plane-wave and self-consistent (PWSCF) approach. The cut-off energy, responsible for distinguishing core and valence states, is established at -6.0 Ry. To guarantee well-converged solutions with 2000 K points, parameters of RMT × Kmax = 7.0 are selected, where RMT represents the smallest muffin-tin radius and Kmax denotes the plane wave cut-off. Convergence is determined to be attained when the overall energy of the system remains unchanged during self-consistent calculations, reaching a threshold of 0.001 Ry. We observe structural stability of these materials using the Birch-Murnaghan fit, tolerance factor and formation energy. The tolerance factor for LiMgCl3 and LiBeCl3 are 1.03 and 0.857, while the formation energy for LiMgCl3 and LiBeCl3 are -7.39 eV and -8.92 eV respectively, confirming these to be stable structurally. We evaluate the electronic properties of the current materials, shedding light on their nature, by using the suggested modified Becke-Johnson potential. It turns out that they are indirect insulators, with calculated band gaps of 4.02 and 4.07 eV for LiMgCl3 and LiBeCl3, respectively. For both materials, we also calculate the density of states (DOS), and our findings regarding the band gap energies are consistent with the band structure. It is observed that both materials exhibit transparency to low-energy photons, with absorption and optical conduction occurring in the UV range. These compounds are mechanically stable, according to the elastic investigation, however LiBeCl3 shows higher resistance to compressive and shear loads as well as resistance to shape change. On the other hand, LiMgCl3 exhibits weaker resistance to changes in volume. Furthermore, we discovered that none of the compounds are entirely isotropic, and specifically, LiMgCl3 and LiBeCl3 are brittle in nature. These materials appear to be potential candidates for use in optoelectronic devices based on our analysis of their optical properties. Our findings may provide comprehensive insight, invoking experimental studies for further investigations.

17.
RSC Adv ; 13(21): 14530-14538, 2023 May 09.
Article En | MEDLINE | ID: mdl-37188253

Arsenic (As3+) is the most carcinogenic and abundantly available heavy metal present in the environment. Vertically aligned ZnO nanorod (ZnO-NR) growth was achieved on metallic nickel foam substrate via a wet chemical route and it was used as an electrochemical sensor towards As(iii) detection in polluted water. Crystal structure confirmation, surface morphology observation and elemental analysis of ZnO-NRs were conducted using X-ray diffraction, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Electrochemical sensing performance of ZnO-NRs@Ni-foam electrode/substrate was investigated via linear sweep voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy in a carbonate buffer solution of pH = 9 and at different As(iii) molar concentrations in solution. Under optimum conditions, the anodic peak current was found proportional to the arsenite concentration from 0.1 µM to 1.0 µM. The achieved values for limit of detection and limit of quantification were 0.046 ppm and 0.14 ppm, respectively, which are far lower than the recommended limits for As(iii) detection in drinking water as suggested by the World Health Organization. This suggests that ZnO-NRs@Ni-foam electrode/substrate can be effectively utilized in terms of its electrocatalytic activity towards As3+ detection in drinking water.

18.
ACS Omega ; 8(20): 17779-17787, 2023 May 23.
Article En | MEDLINE | ID: mdl-37251136

In the present work, several properties of fluoroperovskites are computed and examined through the approximations of trans- and blaha-modified Becke-Johnson (TB-mBJ) and generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) integrated within density functional theory (DFT). The lattice parameters for cubic TlXF3 (X = Be, Sr) ternary fluoroperovskite compounds at an optimized state are examined and their values are used to calculate the fundamental physical properties. TlXF3 (X = Be and Sr) cubic fluoroperovskite compounds contain no inversion symmetry and are thus a non-centrosymmetric system. The phonon dispersion spectra confirm the thermodynamic stability of these compounds. The results of electronic properties clarify that both the compounds possess a 4.3 eV of indirect band gap from M-X for TlBeF3 and a direct band gap of 6.03 eV from X-X for TlSrF3, which display that both compounds are insulators. Furthermore, the dielectric function is considered to explore optical properties like reflectivity, refractive index, absorption coefficient, etc., and the different types of transitions between the bands were investigated by using the imaginary part of the dielectric function. Mechanically, the compounds of interest are computed to be stable and possess high bulk modulus values, and the ratio of "G/B" is higher than "1", which indicates the strong and ductile nature of the compound. Based on our computations for the selected materials, we deem an efficient application of these compounds in an industrial application, which will provide a reference for future work.

19.
ACS Omega ; 8(13): 12372-12378, 2023 Apr 04.
Article En | MEDLINE | ID: mdl-37033827

The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 - x)[0.90(Bi0.5Na0.5)TiO3 - 0.10SrTiO3] - xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (T s) for sufficient densification was 1160 °C. However, T s was reduced to 1090-1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (T m) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.

20.
RSC Adv ; 13(9): 6199-6209, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36825291

Perovskites are a significant class of materials with diverse uses in modern technology. The structural, electronic, elastic, thermoelectric, and optical properties of RbTiCl3 and CsTiCl3 perovskites were estimated using the FP-LAPW method within the framework of density functional theory. The exchange-correlation energy of both analyzed systems was calculated using the Generalized Gradient Approximation (GGA) functional. The structures are optimized and lattice constants of 5.08 Å and 5.13 Å are found for XTiCl3 (X = Rb, Cs), respectively. The structural analysis reveals that they have cubic symmetry. Their half metallic nature was proved by their metallic nature in one spin channel and semiconducting nature in the opposing spin channel. Densities of states are calculated to predict the interaction of orbitals of distinct atoms in the compounds. From the results of optical response, it is found that these compounds show high optical absorption in the visible region of light. Moreover, thermoelectric properties of the studied materials are calculated as a function of chemical potential at different temperatures using the theory of semi-classical Boltzmann transport within BoltzTrap code. The thermoelectric response shows that the investigated compounds as p-type can be beneficial in overcoming the global warming issue.

...